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Abst rac t  

Generating plans for execution imposes a different set 
of requirements on the planning process than those im- 
posed by planning alone. In highly unpredictable ex- 
ecution environments, a fully-grounded plan may be- 
come inconsistent frequently when the world fails to 
behave as expected. Intelligent execution permits mak- 
ing decisions when the most up-to-date information 
is available, ensuring fewer failures. Planning should 
acknowledge the capabilities of the execution system, 
both to ensure robust execution in the face of uncer- 
tainty, which also relieves the planner of the burden 
of making premature commitments. We present Plan 
Identification Functions (PIFs), which formalize what 
it means for a plan to be executable, m d  are used in 
conjunction with a complete model of system behavior 
to halt the planning process when an executable plan is 
found. We describe the implementation of plan identifi- 
cation functions for a temporal, constraint-based plan- 
ner. This particular implementation allows the descrip- 
tion of many different plan identification functions. 

Introduction 
Planning has been an important problem in Artifcial 
Intelligence, but plan execution is a problem that AI 
has often overlooked. In fairly simplistic and highly- 
predictable environments, the planning system can 
hand a fully-grounded plan to the execution system and 
the execution system will be able to execute it flaw- 
lessly. However, in unpredictable environments, a fully 
grounded plan will often result in execution failures. 
Additionally, it is inefficient for the planning process 
to commit to decisions in advance that are likely to be 
invalidated during execution. One way to avoid these 
problems is to have an intelligent execution system that 
is able to “fill in the blanks” given a plan that is not 
fully grounded. Intelligent execution may range in com- 
plexity from fairly simple computations to  a process re- 
sembling full-blown planning. Depending on the char- 
acreriStics crf the ~ x e c ~ ~ t i o f i  envir~nm-enf, the best plan 
to  hand to the execution system will contain more or 
less commitment and information. 

AI sdutions fer placning uld p!m execution often use 
declarative models to describe the domain of interest. 
The planning system typically uses an abstract, long- 
term model and the execution system typically uses a 
concrete, short-term model. In mast systems that deal 
with planning and execution, the language used in the 
declarative model for planning is different than the lan- 
guage used in the execution model. This approach en- 
forces a rigid separation between the planning model 
and the execution model. The execution system and the 
planning system have to agree on the semantics of the 
plan, and having two separate models requires the sys- 
tem designer to replicate the information contained in 
the planning model in the execution model. Since much 
of the knowledge may be shared between the planning 
and execution systems, this produces a model synchro- 
nization problem. Furthermore, if the execution system 
wants to relay information back to the planner, in this 
scenario, the information has to be translated. Not us- 
ing the same language may be detrimental because syn- 
chronization and translation may introduce errors and 
increase model engineering effort. 

If both the execution and planning systems have a 
common language, then information from and to  the 
executive can flow seamlessly. Furthermore, changes 
in the planning model are then automatically propa- 
gated to the execution model. In addition, it is easier 
to modify the boundary between planning and execu- 
tion systems in such systems. Even if a single model for 
planning and execution is not available, there are still 
good reasons for making it easy to vary the boundary 
between planning and execution systems using a single 
model of system behavior. Many candidate execution 
systems may be available; identifying the right one re- 
quires a planning model that can be used with any one 
of the possible execution systems. 

An executable plan is a plan that the execution sys- 
tem can make any remaining decisions and then trans- 
late the result into commands that can be sent to the 
hardware with which the syszern is irritraciirig. Based 
on this notion, the “executability” of a plan depends di- 
rectly on the capabilities of the execution system. For 
a general model of system behavior, we would like to 
specify which parts of that model describe the commit- 
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ments that should be made by the execution system. 
In this paper we provide the formalism and implemen- 
tation of Plan Identification Functions PIFs . These 
functions exactly characterize the executable plans in 
a model that is shared between the planner and the 
executive. Thus, they serve to separate the duties of 
planning by partitioning the planning problem into a 
set of commitments that are made in advance, and a 
set that are interleaved with plan execution. 

We will proceed by presenting a simple example to 
clarify some of these notions. 

A Simple Example 
To examine the issues involved in generating plans for 
execution, let us consider a simple spacecraft that can 
slew (i.e, turn to different orientations), take pictures, 
and download pictures to Earth. 

A plan request for this spacecraft might consist of a 
set of picture requests, and then a request for down- 
loading some or all of these pictures to Earth. The 
planning process would generate an “executable plan” 
that achieved those goals. The execution agent would 
then execute the plan by thrusting to rotate the space- 
craft, activating camera components, and transmitting 
data. 

A traditional approach to this problem would be 
based on separating the planning from execution at 
some specific level of abstraction. For example, the 
planning process might involve generating slew ac- 
tions, orientation maintenance actions, picture-taking 
actions, and download actions. The complete plan, at 
that level of abstraction, would then be executed by 
breaking each high-level action down into specific com- 
mands that together perform the action. The slew ac- 
tions, for example, would be broken down into engine 
warmup, thruster firing, wait, opposite thruster firing, 
and then stabilization. The sequence of execution com- 
mands would have to fit within the time allocated to 
the slew action. 

If the execution system is sophisticated, it could de- 
termine how fast to slew, since the slewing rate is con- 
trolled by the time spent firing the engines at the start 
and end of the slew. Slower slew rates typically save 
fuel. The execution system might also be able to deter- 
mine when to start activities that have some temporal 
flexibility. Rather than waiting until the next action 
start time, which is bound to be later rather than ear- 
lier, to provide a safety margin, the execution system 
could determine that all earlier actions have been com- 
pleted, that the action in question can start as early as 
a given time, and then start that action at that time. 

In the Remote Agent Experiment ( JMMfOO; 
MNP+98), the planning process built a partial plan 
where certain temporal decisions were left to the ex- 
ecution engine. These temporal decisions were limited 
to those that together formed a simple dispatchable net- 
work (MMT98). However, as noted in (JMM+OO), the 
notion of retaining flexibility in the executed plan can 
be generalized to an arbitrary set of decisions. 

Models of System Behavior 
The system model defines the set of possible states 
and actions, along with rules that  specify allowed 
and forbidden relations between actions and states. 
The states and actions are defined by predicates like 
pointingAt (obj ect) and slewFromTo (obj  1, obj2) .  
We define a partial p lan  as a collection of temporal pred- 
icate statements, based on a given model. We assume 
that the parameter set for each predicate doesn’t have 
to be fully grounded. This notion naturally supports 
more flexible planning paradigms such as those used in 
constraint-based planning systems. 

The rules in the system model specify, directly or 
indirectly, the conditions for a state or action being in 
the plan: 
0 which instantiations of statelaction predicates are 

valid 
for each actionlstate, what other states or actions 
must exist in the plan to support i t  

0 the temporal and parametric relations between states 
and actions 
For example, a model for our simple spacecraft 

would state that the predicates include pointingAt , 
slewingFromTo, takepicture, download. Legal in- 
stantiations of slewingFromTo are limited to those 
where the origin and destinations are not the same, and 
takepicture instantiations are limited to objects and 
times where an overly bright object, like the sun, is not 
in the frame. There are a number of relations between 
predicates in this model; for example, a takepicture 
must be done within a period where the spacecraft is 
pointing at the object in question. This means that 
there must be a pointingAt predicate in the plan, and 
that furthermore, the appropriate pointingAt must 
have the same object value as the takepicture, must 
start no later than the takepicture and must end no 
earlier than the t akep i cture. 

It should be noted that this core approach covers ba- 
sic STRIPS-like descriptions, where states are preserved 
by the frame axioms and action definitions define state 
changes. It also covers constraint-based approaches, 
with and without an explicit representation of time or 
resources. Furthermore, in STRIPS, the initial state 
and goal statements are simply part of a partial plan 
that must be extended to include the actions necessary 
to go from the initial state to a goal state. Since both 
planning and execution use the same model, the plan 
is semantically meaningful to both the planner and the 
executive l .  

The rest of the paper is organized as follows. We 
first provide a formal definition of PIFs and character- 
ize some useful properties of PIFs . We then describe 
an implementation of PIFs in a planning framework 
called EUROPA. We identify some important imple- 
mentation details that arise when implementing PIFs 

‘This idea is borrowed from (MDF+02), which we de- 
scribe later in the paper. 



in this framework. We then conclude and discuss sev- 
era1 open issues. 

In constraint-based planning, partial and complete 
plans are represented as networks of intervals. The con- 
nections between intervais in such a necwork are defined 
by the configuration rules. Plan Identification 

We now turn our attention to formally defining the con- 
cepts related to general plan identification. We begin 
with a general and expressive approach to planning, 
which supports arbitrary variables, quantitative tem- 
poral relations, arbitrary constraints, and expressive 
activity-state rules. 

Constraint-based planning 
In order to address realistic problems, a planning 
paradigm must support actions and states with tem- 
poral extent, complex reiations anivng action and state 
arguments, as well as complex model rules about condi- 
tions and effects of actions and states. In recent years, 
different approaches have been proposed for moving 
away from the classic STRIPS paradigm, and towards 
more realistic approaches that incorporate explicit rep- 
resentations of time and resources. These approaches 
fall into a broad category called Constraint-Based Plan- 
ning (CBP) (SFJOO). 

The basic idea behind CBP is to use variables to 
represent all aspects of states and actions, and to use 
constraints to enforce relations between those variables. 
The basic element in constraint-based planning is an in- 
terval. An interval is simply a predicate holding over a 
period of time. The start and end of the interval and 
the parameters of the predicate are described by vari- 
ables. M a e  formally, an interval is a tuple, (p, x, s, e), 
where B is a predicate name, X is a vector of variables 
defining the arguments to the predicate, and s and e 
are temporal variables, defining the start and end of 
the interval. 

A planning domain is defined by the set of kterval 
types, and a set of configuration rules. A conjigura- 
tion rule is a generalization of the notion of precon- 
ditions and effects. Instead of specifying only state 
values before and after an action, a configuration rule 
can specify arbitrary temporal relations specifying how 
actions and states must relate in a valid plan. This 
means that a configuration rule can specify that when- 
ever an attribute is assigned an interval of a certain 
kind, other intervals must exist in the plan, such that 
specific constraints are satisfed. In addition to tem- 
poral constraints, configuration rules can specify other 
constraints amongst the parameters of the actions and 
states. 

In our spacecraft example, 
consider a takePicture(x) interval, I ,  for the cam- 
era attribute. A configuration rule might specify that 
there must be a pointingAt (y) interval, J ,  such that 
x = y ,  t h e  siarr. of j is at ieast iG seconds before the 
start of I ,  and the end of J is no earlier than the end 
of I .  Notice that the latter constraint in the rule is not 
strictly a precondition or an effect, but only involves 
temporal constraints. 

Partial plans and completions 
In CBP, a partial plan consists of a set of intervals and 
a set of constraints among the variables representing 
those intervals. 

A partial plan P is valid, if for every applicable con- 
figuration rule, all the intervals and constraints required 
by those rules are in P. A partial plan P is instanti- 
ated, if each variable has been given a single value. A 
partial plan P is consistent if none of the constraints in 
the plan are violated and inconsistent otherwise. 

A planning problem is simpiy a partial pian. This 
notion generalizes the very restrictive STRIPS notion 
of only specifying an initial state and a set of goals. The 
notion of a planning problem as a partial plan allows 
specific actions as goals, supports the specification of 
maintenance goals, makes it easy to  define exogonous 
events, and much more. Planners can modify plans in 
two ways. A restriction is defined as the binding of a 
variable or the addition of a constraint. A relaxation is 
defined as the unbinding of a variable or the removal of 
a constraint. An extension of a given partial plan, P, is 
a plan Q such that each interval in Q can be mapped to 
a compatible interval in P,  and each constraint in P is 
in Q. Thus, restricting a plan P results in an extension 
Q, and relaxing a plan Q’ results in a plan P’ such that 
Q‘ is an extension of P’. 

A partial plan, Q is complete if every interval is in- 
stantiated and the plan is valid. Q is a completion of 
every relaxation of &. We say that a problem instance 
P has a solution if it  has a consistent completion Q. 

The strictest notion of solving a planning problem P 
is to  find a consistent compltior? of P .  However, a more 
general notion is much more useful when it comes to 
planning for execution agents that are not completely 
trivial in complexity. In essence, solving a planning 
problem P for an intelligent execution agent involves 
finding a consistent extension Q that can be executed by 
the given execution agent. We now turn our attention 
to a general formulation of such a notion. 

Plan identification functions 
Consider a partial plan encountered during the course 
of planning. We would like a declarative description 
of the set of plans that can be accepted for execution 
by the execution system. This is the notion of plan 
identification funct ions (PIFs ). The basic idea is to 
have a mapping that indicates whether or not a partial 
plan is suitable for a given execution engine or not. 

Identifying inconsistency is a natural complement to 
pian identification. Consider a partiai pian that has 
no valid completions. In a sense, the partial plan is 
a dead-end. However, it is computationally expensive 
to determine whether any given partial plan is incon- 
sistent or not. Consequently, it is useful to think of a 
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“consistency identification function” that maps partial 
plans to T, F, or 7, where the T value indicates that the 
plan is consistent, F indicates it is inconsistent, and ? 
indicates that the consistency of the plan is not known. 

The original notion of a PIF appeared in ( JMMfOO). 
This definition combined the notion of consistency with 
executability, and used three return values, T, F and ? A 
return value of F indicated that the plan violated some 
constraint, i.e. no extension of the plan was consistent, 
which forced the planner to backtrack. A return value 
of T indicated that all intervals were valid and consis- 
tent according to a set of applicable configuration rules, 
and thus planning was complete. A return value of ? 
indicated that the plan was consistent but not valid, 
and thus the planner had to continue searching for an 
extension. 

In this paper, we define a more relaxed notion of a 
plan identification function. A PIF maps partial plans 
to the values Y and N. A return value of Y indicates 
a plan is executable and a return value of N indicates 
a plan is not executable. Keeping the definitions as 
general as possible, we do not pose any more restrictions 
on the evaluations of partial plans. For example, it is 
possible that plan execution systems may be based on 
technology that works in the space of inconsistent plans, 
and thus we want to be able to specify PIFs that are 
able to pass inconsistent plans to the execution system. 
We therefore look at  specific characteristics of PIFs that 
are desirable in certain cases. 

Characteristics of plan identification 
functions 
Regardless of the impact of execution, we assume that a 
partial plan P must be consistent when the plan execu- 
tion commences. We also assume that the instructions 
the execution system issues to the underlying hardware 
are based on fully instantiated plans. If either of these 
conditions is not satisfied, then the plan execution sys- 
tem must be able to come up with a consistent complete 
plan. 

The simplest question one can ask of a plan handed 
to the execution system is whether it has a consistent 
completion. In most (but not all) cases, such correct- 
ness would be a crucial characteristic of an executable 
plan. 

A PIF , i, enforces correctness if, for any partial plan 
P ,  such that f(P) = y, P has at least one consistent 
completion. 

The next question is how much work needs to be done 
by an execution engine to find a consistent completion 
in different circumstances. This is a particularly inter- 
esting question if uncertainty during execution is taken 
into account. 

A PIF , i, enforces solvability if, for any partial plan 
P ,  such that i ( P )  = y, all extensions of P are complete 
and consistent. 

It is often difficult to find plans satisfying the above 
property without finding a complete plan to begin with. 
As such, it is useful to identify PIFs that return partial 

Partial Plan 

Figure 1: The Plan Identification Function as a Flaw 
Filter 

plans that require only a bounded amount of time to 
solve. In cases where a PIF returns inconsistent plans 
to the executive, it is also useful to characterize the 
amount of time that search in the infeasible space is 
performed. Because of the different search procedures 
required we provide two definitions below. 

We first want to formally characterize an executive 
that can efficiently ensure a completion of a consistent 
plan can be found, if one exists. A PIF , i, enforces 
O ( f ( n ) )  solvability if, for any consistent partial plan P 
satisfying i (P )  = y, then in time O(f(lP1)) either a 
consistent completion of P can be found or it can be 
shown that no consistent completion of P exists. 

On the other hand, if the executive is handed an in- 
consistent plan, the problem is somewhat different. In 
this case, no completion is possible. Instead, we must 
find a completion of the original planning problem that 
the planner attempted to solve. Suppose the original 
planning problem is R. A PIF , i, enforces O ( f ( n ) )  
transformability if, for any partial plan P satisfying 
i ( P )  = y, then in time O(f( lP1))  a series of transfor- 
mations of P resulting in a &, a consistent completion 
R, can be found, or it can be shown that no such com- 
pletion exists. 

Examples 

In the Remote Agent Planner, the PIF accepted only 
consistent and valid plans where all parameter variables 
had been assigned specific values, but tolerated unas- 
signed temporal variables forming a dispatchable simple 
termporal network (JMM+OO). The restriction that the 
resulting temporal network be dispatchable made the 
PIF correct and provided a linear bound on how much 
time it would take the execution engine to complete a 
given plan. This is an O(n)  solvable PIF . 

Recent techniques have extended the ability of execu- 
tion systems to handle uncertainty in temporal quan- 
tities. In particular, (MMVO1) presents an algorithm 
that can detect when a temporal network with uncer- 
tainty can be executed without failure, and (MMO1) 
presents an algorithm for executing such networks in 
polynomial time. Thus, we can write PIFs for such 
problems that are O(f( lPI ) ) ,  where f is a polynomial. 
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From Plan Identification to  Flaws 
We ha7e forma!!y defbed the PIF as a function from 
a plan and a model to an answer of either Y or N. In 
practical applications, however, a planner using the PIF 
would like further indication of what is wrong with the 
plan when the answer is N. A more useful notion of a 
PIF , depicted in Figure 1, is one that given a plan and 
a model, returns a set of possible plan modifications if 
the answer is N and the empty set if the answer is Y. 
We refer to the set of plan modifications as flaws. 

A f law is a modification to a partial plan, either a 
restriction or a relaxation. Let 3 ( P )  be the set of flaws 
derived from plar, P. We can now redefine a PIF as a 
mapping: F(P)  + 27(p) .  That is, the PIF identifies a 
(possibly proper) subset of the flaws that define the set 
of plan modifications that a planner can make. 

The set of flaws can be defined in different ways de- 
pending on how the planner conducts search. For ex- 
ample, suppose the partial plan has valid extensions. 
Then the set, of P,m~s might consist only of the set of 
restrictions that a planner can impose in its search for a 
completion that satisfies the PIF . However, a planner 
such as ASPEN (FRCY97) can benefit from flaws that 
are restrictions or relaxations, since it c m  search the 
space of infeasible solutions. 

Notice that it could require exponential space to de- 
fine very complex plan identification functions if it were 
necessary to enumerate all the possible sets of flaws and 
the mapping that applied for each of those flaw sets. 
Practicality dictates that we have a concise manner of 
both expressing and evaluating PIFs . 

An Implementation of Plan 
Identification 

We have implemented the notion of a PIF as a flaw 
filter in the context of the Construant-based Attribute 
and Interval Planning framework (FJ03) (CAIP), in the 
system called EUROPA (Extensible Universal Remote 
Operations Planning Architecture). In this section we 
first give an overview of EUROPA, then describe the 
PIF implementation. Further details on EUROPA im- 
plementation can be found in (FJ03); in this section, we 
focus on those aspects that are most relevant to PIFs . 

EUROPA Overview 
CAIP is an extension of CBP. Like the basic constraint- 
based planning paradigm, intervals provide the basic 
representation of actions with durations and states with 
temporal extent. The key addition is in the notion of an 
attribute. An attribute represents some system, subsys- 
tem or other .zspect of the domain for which planning is 
being done. An attribute can only take on one value at 
a given time, so attributes enforce a mmuai eXCiUSiUn 
relation among intervals that are assigned to  the same 
attribute. In addition, each interval must be placed on 
an attribute. This requirement enforces mutual exclu- 
sion among all intervals. 

Partial Plan 

EUROPA 

I Plan Database 

3 
partial Plan’ 

Figure 2: Planning For Execution With EUROPA 

In our spacecraft example, the state of the camera 
might be one attribute. When a picture is being taken, 
the camera takes on the state t a k e p i c t u r e ,  otherwise, 
the state is cameraIdle or slewingFromTo. Similarly, 
the attitude of the spaccraft could be another attribute, 
whose values are instantations of slewingFromTo and 
p o i n t  ingAt. 

A partial plan in EUROPA consists of a mapping of 
attributes to sequences of intervals, a set of free inter- 
vals, and a set of constraints on variables in the given 
intervals. Free intervals are intervals that have not been 
sequenced on attributes yet. We assume for simplicity 
that the set of flaws of a partial plan is comprised of 
free intervals and unbound variables 2 .  A plan identifi- 
cation function, then, takes the set of free intervals and 
unbound variables in the plan database and returns a 
subset of these in response to a query from the planner. 

Figure 2 shows the overall architecture of EUROPA 
in the context of planning for execution. The system is 
composed of the following modules: a planner, a plan 
database, and a plan identification module. Planning 
begins with a partial plan and a domain model. The 
plan database is initialized with the partial plan and 
the model. During planning, a planner can query the 
plan database through the plan identification module 
for flaws in the initial partial plan. Flaws are defined in 
terms of the model configuration rules and the PIF acts 
as a filter. If no flaws remain and the plan is consistent, 
the planner concludes that a plan has been found. If 
flaws remain, however, the planner makes commitments 
to  resolve the remaining flaws by updating the plan 
database. The planner thus alternates between asking 
the plan identification module for flaws and updating 
the plan database until a plm that satisfies the model 
and the PIF is found. 

2Note that this set of flaws is only useful for planners that 
search in feasible space, but EUROPA can support other 
flaws as well. 
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In the EUROPA plan database, predicate arguments, 
timepoints, and attributes of an interval are represented 
as variables. Configuration rules impose constraints on 
the values these variables can take. The plan database 
manages the variables and constraints and makes use 
of a temporal network to maintain consistency between 
temporal variables and the temporal relationships im- 
posed by the configuration rules. The plan database 
also uses a constraint network to maintain consistency 
among all other variables and constraints. 

Consider the following simpIe model of the spacecraft 
domain. The first half of the model specifies the inter- 
vals that can appear on each attribute, and the second 
half specifies the configuration rules. We use the simple 
temporal relations of Allen’s Algebra to specify con- 
straints between the timepoints of required intervals. 
We also assume that parameters of different intervals 
with the same variable name require the parameters to 
take on the same value. 

Atti tude : {pointAt (ob j ec t )  , turnTo (obj ec t )}  
Camera: {off (1, ready() ,  takePic(object)} 
Take-Picture(B) -+ met-by ready() 
Take-Picture ( B )  -+ contained-by pointAt ( B )  
r e a d y 0  -+ met-by o f f  (1 
pointAt ( B )  -+ met-by turnTo(B) 

Figure 3: A simple model of the spacecraft domain 

EUROPA enforces configuration rules by means of 
the following plan invariant whenever a plan modifica- 
tion results in a change to the set of plan completions, 
the intervals in the plan are updated. New intervals 
are added as free intervals. In the case of relaxations, 
some intervals that were part of the plan may no longer 
be justified, and if so, the intervals and all associated 
variables and constraints are removed. In the case of re- 
strictions, new intervals, variables and constraints may 
be needed in the plan, and if so, they are added. 

Figure 4 shows a plan fragment based on the simple 
model. The Camera attribute is initially turned off, then 
it is ready, and then it is taking a picture. While the 
Camera is taking a picture of the object, the At t i tude  
is pointing at the object. Notice that there are two free 
intervals, one with predicate turnTo and one with pred- 
icate pointAt. The free interval turnTo was generated 
by the plan invariant, while the free interval pointAt 
was part of the initial problem instance. 

Consider the interval pointAt(A) which is in- 
serted on the Att i tude attribute. In this case, the 
rule pointAt(B) + met-by turnTo(B) means that 
if a pointAt(B) interval exists in a plan, then a 
turnTo ( B )  must preceed the pointAt ( B )  . The pres- 
ence of the pointAt(& interval forces the addition 
of the free turnTo(C) interval due to the plan invari- 
ant. Similarly, if the pointAt(A) interval is removed 
from the Att i tude attribute, then the free interval 
TurnTo ( C )  is no longer justified, and is removed from 
the plan. 

LEGEND 
Temporal 
\‘aria& - Precedence Equality 

+ i +  Interval 

Constraint Constraint 

+-+ 
Figure 4: A simple partial plan for the model described 
in Figure 3 

In EUROPA, the parameter equivalence is handled 
by creating a new variable for the required turnTo inter- 
val and posting an equivalence constraint between the 
parameters. In this example, the parameter C of the 
turnTo predicates has been equated with the param- 
eter A of the sequenced poin tAt0  interval. Finally, 
we note that C has not been bound to any particular 
value, while parameter D of the other turnTo has been 
bound to value d. 

Plan Identification in EUROPA 
In EUROPA, the PlanId function is implemented as 
a filtering operation on the set of flaws in the plan 
database. To support this, the system must provide 
capabilities to: 
1. obtain access to the set of flaws in the plan database; 
2. define a filter expressing criteria for including or ex- 

3. obtain a set of filtered flaws by applying such a filter. 
These capabilities are accomplished by providing: 

1. a flaw storage mechanism, referred to as the 
Flawcache, which keeps the set of flaws in the plan 
database synchronized with changes made through 
explicit commitments by the planner or derived 
through inference. 

2. a highly customizable filtering structure which allows 
pre-defined conditions and/or new custom conditions 
to be seamlessly integrated in a single filter. 

3. a flaw querying facility which handles all access to 
the Flawcache and applies filtering criteria defined 
by the planner. 
The remainder of this section describes in more detail 

the framework developed to achieve this in an efficient 
and customizable manner. 

cluding a flaw; 
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Planner and event-based synchronization leads to efficient im- 
plementation. 

while (done==false) 
if (isconsistent 0) 

filteredFlaws=getFlawsFromQuery () 
if (filteredFlaws .isEmpty () ==false) 

nextFlaw = choose(filteredF1aws) 
resolve (next Flaw) 

else done=true 
else ... // rest of the algorithm omitted 

end while 

Figure 5: Class Diagram of the PlanId Framework 
Fignre 5: Planning with Flaw Queries. 

Framework Class Diagram 
Figure 5 presents the internal details of the PlanId mod- 
ule referenced in Figure 2. The PlanDatabase gener- 
ates events indicating changes to intervals and variables 
when the plan invariant is invoked. These events are re- 
ceived by the Flawcache and used to maintain the set 
of all flaws in the system, i.e. all free intervals and un- 
bound variables. Events indicating a restriction may 
cause a flaw to be removed from the Flawcache e.g. in- 
serting a free interval or assigning a value to an unbound 
variable. Events indicating a relaxation may cause a 
flaw to be inserted into the Flawcache e.g. relaxing t o  
domain of a variable or freeing an inserted interval. 

A planner creates a Flawquery at the beginning of 
the planning process. It is by means of a Flawquery 
that a planner obtains the relevant subset of flaws as 
indicated by a filter. Planner-specified filters are de- 
fined in a F i l t e r c r i t e r i a o b j e c t ,  which is just a collec- 
tion of Conditions.  Each Flawquery has exactly one 
F i l t e r c r i t e r i a  instance, provided to  it during con- 
struction. Condition objects provide the customiza- 
tion necessary for planners to filter out flaws they wish 
to ignore. For a Flaw in the FlawCache to  be returned 
by a Flawquery, all Conditions must be satisfied. 

In order to gain access to the set of flaws and the set of 
flaw changes, each Flawquery establishes a Connect ion 
with the Flawcache. A Connection provides access 
to all flaws in the Flawcache. A Connection also 
provides a location to store information on changes 
in the Flawcache since the the Flawquery was last 
queried. Notifications of changes in the contents of the 
Flawcache, i.e. flaws inserted or removed, are pushed 
to each connection from the Flawcache as the latter is 
synchronized with the PlanDatabase. 

This architecture provides a number of useful fea- 
tures. First, the FlawCache can support many con- 
nections at once, enabling it to provide flaws to many 

a x  provided, enabling a very large number of different 
PIFs to be expressible. Third, it is very straightforward 
to develop additional conditions making the approach 
very extendible. Finally, emphasis on lazy evaluation 
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Step 1: 
FlawCache={A, B,  C,pointAt ( D  = d )  , turnTo(C)} 
FilteredFlaws:{A, B, c ,poin tAt(D = d ) }  
nextFlaw: pointAt ( D  = d )  

FlawCache={A, B ,  C, E,turnTo(C) , turnTo(E)} 
FilteredFlaws:{A, B, C, E }  
nextFlaw: E 

FlawCache={A, B,  C}turnTo ( E  = d )  , turnTo ( C )  ] 
FilteredFlaws:{A, B,  C} 
nextFlaw: A 

Step 2: 

Step 3: 

Figure 7: Evolution of the flaws for the partial plan in 
Figure 4. 

To see how the flaw filtering works, consider the sam- 
ple partial plan shown in Figure 4. There are five 
flaws: the variables A, B and C, the turnTo(C) inter- 
val and the pointAt(D = d )  interval; the FlawCache 
has these five flaws. Now suppose that the PIF fil- 
ters out intervals with predicate turnTo. Then the set 
of filtered flaws consists of the three variables and the 
pointAt (D = d) interval. 

The basic loop of a planner is similar to the fragment 
presented in Figure 6. At each step, the planner re- 
quests the filtered flaws. Once the flaws are retrieved, 
the planner uses some criteria to select a flaw, then uses 
another criteria to resolve the flaws. Application of the 
plan invariant and propagation of variable changes in 
the constraint network result in updates to the Flaw- 
Cache. Subsequent queries to the FlawQuery will re- 
turn a new set of flaws that accounts for these updates 
and the filtering of these flaws by the PIF . 

steps of planning given the partial plan and PIF that we 
have described. This process is shown in Figure 7. Let 
us assume that choose selects flaws according to some 
arbitrary order. Also suppose that resolve performs an 
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insertion for free intervals or a variable assignment for 
unbound variables. After inserting pointAt(D = d )  
we see that the plan invariaiit ensures the creation of 
a turnTo ( E )  interval. The FlawQuery, however, indi- 
cates that the set of filtered flaws at step 2 only includes 
the variables A,  B,  C, E. At the next step, choose() re- 
turns flaw E ;  there is only one possible value, d, and 
thus the plan invariant doesn’t lead to the creation of 
any new variables or intervals. 

Such a simple filter could be achieved with- a sin- 
gle condition which would check the predicate name of 
each interval flaw and exclude it if it matched the name 
turnTo. 

EUROPA Plan Identification Function 
Capabilities 
EUROPA’s PIF framework supports the following con- 
ditions, among others: 
0 Interval predicate filtering - filters all intervals of a 

particular predicate. 
0 Interval variable filtering - filters selected variable of 

all intervals with a particular predicate. 
Attribute filtering - filters all intervals and all vari- 
ables of all intervals from a particular attribute. 

0 Temporal filtering - filters intervals according to a 
variety of temporal specifications. One example is a 
filter for intervals guaranteed not to happen within a 
temporal extent (a horizon filter). 
In practice, different applications will impose differ- 

ent requirements on plan executives. In an execution 
environment that is uncertain, there are advantages to 
not fully specifying a plan. To be robust against un- 
certainty in the execution environment a plan must be 
flexible. For instance, if decisions cannot be determined 
in advance because the way in which they are made de- 
pends on factors that are only determined at execution 
time, it may be advantageous to leave these decisions 
up to the execution system. The PIF framework al- 
lows considerable latitude in defining the capabilities 
of execution systems, and thus enables the planning 
technology to be more widely useful. However, it also 
provides considerable flexibility within a single applica- 
tion. Engineers can design different PIFs and analyze 
the resulting performance of the integrated planning 
and execution system, and choose the PIF that works 
best. 

An execution system will typically only care about 
the plan developing inside the current execution win- 
dow. If this execution system is implemented as a plan- 
ner, a PIF could be used to focus the planning effort 
on that execution window only using the horizon fil- 
ter. Such a PIF would contain a horizon condition that 
would specify, for each free interval and each unbound 
variable, whether it falls within the horizon or not. A 
free interval falls within the horizon if its start time and 
end time variable domains include the horizon time- 
points. An unbound variable will fall inside the horizon 

if it belongs to one of the intervals that falls within the 
horizon. 

The time at which an event actually occurs is usu- 
ally different from the planned time. This difference 
can sometimes prove costly since it may cause some as- 
sumptions that were made in the planning stage to fail. 
In EUROPA, the temporal network is implemented as 
a Simple Temporal Network (DMPS 1). Simple Tempo- 
ral Networks guarantee that if the network is consistent, 
an appropriate set of bindings of the temporal variables 
can be found in polynomial time. Thus, if the tempo- 
ral network is consistent, no further commitments on 
time have to be made during planing. This is assuming 
that the executive is intelligent enough to be able to 
find this appropriate set. A PIF provides the means to 
define this flexibility if it implements a condition that 
filters temporal variable flaws. If no temporal variable 
flaws are passed on to the planner, these decisions will 
remain unbound (though constrained by the temporal 
network) until execution time. 

Overcommitment at planning time may prove costly 
in other ways. In cases where a plan consists of high- 
level and low-level tasks, the low-level task expansion 
of the high-level tasks may depend highly on when the 
tasks get executed. In such cases, it is convenient to 
let the execution system map high-level tasks into low- 
level tasks during execution. This frees the planner 
from generating low-level tasks, and allows the execu- 
tive to choose the low-level tasks that best fit the actual 
execution. In EUROPA, high-level and low-level tasks 
can be placed on separate attributes. A PIF provides 
the means to define this flexibility by implementing a 
condition that filters flaws depending on whether they 
are allowed to be placed on high-level attributes or not. 
A free interval can be placed on a high-level attribute 
if i t  belongs to the set of allowable states of that at- 
tribute. An unbound variable belongs to the high-level 
attribute if it belongs to an interval that can be placed 
on the attribute. 

There are instances of planning for execution when 
some planning decisions inside one execution cycle may 
determine what will happen in a future execution cycle. 
These commitments are sometimes unnecessary, espe- 
cially in uncontrolled execution environments. These 
planning decisions may manifest themselves as particu- 
lar predicate logic statements or as arguments to pred- 
icate logic statements. A PIF povides the means to 
delay commitment on these predicates or variables by 
implementing a condition that filters flaws on whether 
they are based on these predicates or variables. 

Complexity Analysis 
In the simplest implementation, one could omit the 
Flawcache and Connect ion  infrastructure. Resolving a 
query would be accomplished by iterating over all inter- 
vals and variables in the plan database and for each, ap- 
plying the filter to test for inclusion or exclusion. This 
would result in a worst-case time-complexity given by 
( N ,  + Ni) * N, * C, where N,, is the number of vari- 



. 
ables, Ni is the number of intervals, N, is the number 
of conditions in the filter, and C, is the average cost of 
evaluating a condition. 

Since the points of greatest cost are in the evalua- 
tion of conditions, we seek to reduce the execution of 
condition tests. This is accomplished in a numnber of 
ways: 
1. The last set of filtered flaws are cached in each 

2. 

3. 

4. 

5. 

Flawquery. 

The current set of flaws in the plan database are 
cached in the Flawcache. 
Each cache is maintained through notifications of 
changes. 
Conditions may be ordered to fail fast, based on the 
characteristcis of each problem. 
The FlawQuery is updated only when the planner 
consults it for the latest set of flaws. Thus, the 
queries are only run on the set of Aaws that were 
added since the last query. 
The resulting worst-case cost of a query is approx- 

imated by: N+ * N, * C, where N+ is the number of 
flaws inserted into the flaw cache since the last query.4 
The approximation omits the cost of caching events 
during synchronization of the Flawcache and the Plan- 
Database. This is reasonable since the costs of caching 
are much less than the cost of evaluating the conditions 
over all insertions. Notice that we do not need to worry 
about flaws that are removed from the cache, since they 
aren’t returned to  the planner in any case. 

Related Work 
A wide variety of agent architectures have been de- 
signed to support both planning and execution. We 
will not describe all aspects of these systems here. We 
will describe how these systems characterize the bound- 
ary between planning and execution, and compare it to 
the approach we have described here. 

Many integrated planning and plan execution frame- 
works define a fixed boundary between their compo- 
nents. These systems also use different modeling lan- 
guages, in some cases with different semantics, and thus 
have potential problems with model synchronization. 
Finally, these systems do not have a crisp declarative 
characterization of the boundary between the compo- 
nents. Examples of integrated planning and plan exe- 
cution systems in this category are 0-Plan (TDK94), 
3T (BFG+97), and Propice-Plan (DI99). 

Cypress (WMLW95) is a planning and plan execu- 
tion framework designed for a variety of applications, 
including military operations. Cypress is a loosely cou- 
pled integration of the SIPE planner, the PRS reactive 
execiitinn ~ y ~ t e m ,  aqd Gister-CL sys t e~-  f ~ r  reacning 

In practice only Some of the conditions will be executed 
since we discard the flaw after the first condition fails. 

N+ << (N, + Nu) since there are relatively few flaw 
insertions resulting from each planner commitment. 

3 

4 

under uncertainty. Cypress enables human intervention 
during planning and plan execution. Cypress uses the 
ACT representation to modei both pianning and execu- 
tion. The boundary between SIPE and PRS is flexible, 
as PRS can invoke SIPE to handle run-time plan fail- 
ures. However, there is no facility in Cypress to describe 
the boundary between the planner and plan execution 
in a declarative way. 

The Remote Agent (RA) (MNP+98; JMM+OO) is an 
agent architecture for spacecraft control that was used 
in a 2-day experiment of an autonomous probe. The RA 
consisted of a planner, a plan execution system, and a 
mode identification and reconfiguration system. The 
RA planner built plans that were temporally flexible so 
that the plan execution system could decide on-the-fly 
which tasks to start and end (MMT98). This repre- 
sented a significant advance at the time; however, other 
applications using the RA could not use any other di- 
vide between planning and execution. Furthermore, the 
three components of the system used different modeling 
languages with different semantics, requiring consider- 
able effort to ensure model synchronization. 

IDEA (MDFf02; DLM03) is an agent architecture 
designed to overcome shortcomings in the RA approach 
to agent modeling. IDEA provides a simple virtual 
machine that supports plan execution, consisting of a 
model, plan database, plan runner, and reactive plan- 
ner. The job of the reactive planner component of an 
IDEA agent is to ensure that a “locally executable’’ plan 
is returned. Thus, a crucial task is to  define the scope 
of the Reactive Planner’s job. The PIF is a natural way 
to focus on those parts of the model that must be ad- 
dressed by the Reactive Planner. IDEA also supports 
many planners operating on the same plan database, 
and thus the same model. PIFs are a natural way 
to define the scope of these various planners in order 
to ensure that planners do not step on each others’ 
toes. IDEA also supports multi-agent architectures us- 
ing inter-agent communication. The original notion of 
IDEA is to separate models for each agent; these mod- 
els are intended to be written in the same language and 
share components. Partial plans serve as the medium 
by which planners communicate with the executive, as 
well as the medium by which IDEA agents communi- 
cate with each other. However, the PIF can (in prin- 
ciple) be used to simply divide up the model amongst 
the agents in a similar manner to  the way it divides up 
models amongst planners; the crucial problem to solve 
is dividing plan databases efficiently among the IDEA 
agents. 

Conclusions and Future Work 
We have described plan identification functions as a way 
of circumscribing the planning problem that must be 
soived in order to creace an executa& pian. FiFs na-;e 
the advantage of enabling a single model to character- 
ize both the planning problem and the plan execution 
problem. They also enable easy characterization of the 
boundary between planning and plan execution, even 



in cases where different models for planning and execu- 
tion are used. They also provide considerable flexibil- 
ity, as they allow the boundary betFeen planning and 
execution to be adjusted. We have described the im- 
plementation of the PIF framework of EUROPA, and 
shown how it can be used to implement many PIFs for 
different type of plan execution systems. 

We have implicitly assumed that a single model of 
system behavior can be written, so that PIFs can be 
used to separate the part of system behavior that per- 
tains to the execution system. The IDEA project 
(MDF+02) is pursuing this notion, but it remains to 
be seen how the concepts extend to more sophisticated 
planning and control architectures. 

We have described one way of using PIFs to divide a 
model amongst many planners. This approach does not 
address important architectural issues of mutli-agent 
access to a shared plan representation. It also doesn't 
address the issue of how to structure the plan represen- 
tations used by planners and executives. The efficient 
implementation of PIFs may be impacted by this archi- 
tecture. 

Note that while the plan that is passed to the ex- 
ecutive may define a set of plan completions, there is 
no reason to assume that the executive chooses one of 
these completions, and in fact no way to characterize 
the actions of the executive in a declarative way. 

PIFs can be used for more than just separating plan- 
ning from the execution system. One can also imagine 
partitioning the planning problem into many different 
problems using a collection of PIF functions. 
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